Identification

Title

The synthesis of potential factors contributing to the asynchronous warming between air and shallow ground since the 2000s on the Tibetan Plateau

Abstract

Atmospheric conditions, topsoil properties and land cover conditions play essential roles in ground surface temperature (GST), surface air temperature (SAT) and their differences (GST-SAT). They determine the strength of the thermal forcing of the lower atmospheric boundary and the distributions of frozen ground in cold regions. However, the relative importance of these factors at various time scales and the underlying physical mechanisms remain less well understood. Here, we investigate the spatiotemporal patterns of GST-SAT and examine 11 potential factors in three categories in influencing the GST-SAT variations from 1983 to 2019 over the Tibetan Plateau (TP) using boosted regression tree models. The results show that the TP has experienced asynchronous warming in GST and SAT since 2001: a warming hiatus in SAT but continued warming in GST, resulting in a significantly increasing trend in GST-SAT. The relative importance of the three categories that influence the GSTSAT spatial variation was: atmospheric variables (56.1 %) > shallow soil properties (24.4 %) > interfacial land cover features (19.5 %). The importance of the factors also varied with the combinations of annual, seasonal, daily, day-time and night-time time scales, manifested by positive or negative effects. The interdecadal changes of net radiation, precipitation, wind speed and soil moisture amplified the asynchronous warming between air and shallow ground over the TP since the 2000s. These findings provide an in-depth understanding of the spatiotemporal variations of GST-SAT and the underlying mechanisms. This study will benefit the development of the Earth system models on the TP.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d75t3qn9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:05:24.759347

Metadata language

eng; USA