Evaluation of subgrid-scale hydrometeor transport schemes using a high-resolution cloud-resolving model
Potential ways of parameterizing vertical turbulent fluxes of hydrometeors are examined using a high-resolution simulation of continental deep convection. The cloud-resolving model uses a double-moment microphysics scheme that contains prognostic variables for four hydrometeor types: rain, graupel, cloud ice, and snow. The benchmark simulation with a horizontal grid spacing of 250 m is analyzed to evaluate three different ways of parameterizing the turbulent vertical fluxes of hydrometeors: an eddy-diffusion approximation, a quadrant-based decomposition, and a scaling method that accounts for within-quadrant (subplume) correlations. Results show that the downgradient nature of the eddy-diffusion approximation enforces transport of mass away from concentrated regions, whereas the benchmark simulation indicates that the vertical transport often moves mass from below the level of maximum concentration to aloft. Unlike the eddy-diffusion approach, the quadrimodal decomposition is able to capture the signs of the flux gradient but underestimates the magnitudes. The scaling approach, which accounts empirically for within-quadrant correlations, improves the representation of the vertical fluxes for all hydrometeors except snow. A sensitivity study is performed to illustrate how vertical transport effects on the vertical distribution of hydrometeors are compounded by accompanying changes in microphysical process rates. Results from the sensitivity tests show that suppressing rain or graupel transport drastically alters vertical profiles of cloud ice and snow through changes in the distribution of cloud water, which in turn governs the production of cloud ice and snow aloft. Last, a viable subgrid-scale hydrometeor transport scheme in an assumed probability density function parameterization is discussed.
document
http://n2t.net/ark:/85065/d7bk1dk2
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-09-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:21:05.354673