Identification

Title

Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere

Abstract

Observations of a comprehensive suite of inorganic and organic trace gases, including non-methane hydrocarbons (NMHCs), halogenated organics and oxygenated volatile organic compounds (OVOCs), obtained from the NASA DC-8 over Canada during the ARCTAS aircraft campaign in July 2008 illustrate that convection is important for redistributing both long-and short-lived species throughout the troposphere. Convective outflow events were identified by the elevated mixing ratios of organic species in the upper troposphere relative to background conditions. Several dramatic events were observed in which isoprene and its oxidation products were detected at hundreds of pptv at altitudes higher than 8 km. Two events are studied in detail using detailed experimental data and the NASA Langley Research Center (LaRC) box model. One event had no lightning NOx (NO + NO2) associated with it and the other had substantial lightning NOx (LNOx > 1 ppbv). When convective storms transport isoprene from the boundary layer to the upper troposphere and no LNOx is present, OH is reduced due to scavenging by isoprene, which serves to slow the chemistry, resulting in longer lifetimes for species that react with OH. Ozone and PAN production is minimal in this case. In the case where isoprene is convected and LNOx is present, there is a large effect on the expected ensuing chemistry: isoprene exerts a dominant impact on HOx and nitrogen-containing species; the relative contribution from other species to HOx, such as peroxides, is insignificant. The isoprene reacts quickly, resulting in primary and secondary products, including formaldehyde and methyl glyoxal. The model predicts enhanced production of alkyl nitrates (ANs) and peroxyacyl nitrate compounds (PANs). PANs persist because of the cold temperatures of the upper troposphere resulting in a large change in the NOx mixing ratios which, in turn, has a large impact on the HOx chemistry. Ozone production is substantial during the first few hours following the convection to the UT, resulting in a net gain of approximately 10 ppbv compared to the modeled scenario in which LNOx is present but no isoprene is present aloft.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7st7qfq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-01-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:50:45.681253

Metadata language

eng; USA