Identification

Title

Prediction skill of GEFSv12 in depicting monthly rainfall and associated extreme events over Taiwan during the summer monsoon

Abstract

The skillful prediction of monthly scale rainfall in small regions like Taiwan is one of the challenges of the meteorological scientific community. Taiwan is one of the subtropical islands in Asia. It experiences rainfall extremes regularly, leading to landslides and flash floods in/near the mountains and flooding over low-lying plains, particularly during the summer monsoon season [June–September (JJAS)]. In September 2020, NOAA/NCEP implemented Global Ensemble Forecast System, version 12 (GEFSv12), to support stakeholders for subseasonal forecasts and hydrological applications. In the present study, the performance evaluation of GEFSv12 for monthly rainfall and associated extreme rainfall (ER) events over Taiwan during JJAS against CMORPH has been done. There is a marginal improvement of GEFSv12 in depicting the East Asian summer monsoon index (EASMI) as compared to GEFS-SubX. The GEFSv12 rainfall raw products have been calibrated with a quantile–quantile (QQ) mapping technique for further prediction skill improvement. The results reveal that the spatial patterns of climatological features (mean, interannual variability, and coefficient of variation) of summer monsoon monthly rainfall over Taiwan from QQ-GEFSv12 are very similar to CMORPH than Raw-GEFSv12. Raw-GEFSv12 has an enormous wet bias and overforecast wet days, while QQ-GEFSv12 is close to reality. The prediction skill (correlation coefficient and index of agreement) of GEFSv12 in depicting the summer monsoon monthly rainfall over Taiwan is significantly high (>0.5) in most parts of Taiwan and particularly more during peak monsoon months, September, and August, followed by June and July. The calibration method significantly reduces the overestimation (underestimation) of wet (ER) events from the ensemble mean and probabilistic ensemble forecasts. The predictability of extreme rainfall events (>50 mm day−1) has also improved significantly.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7pg1wkx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:56:46.291607

Metadata language

eng; USA