Identification

Title

Assimilation of semi-qualitative observations with a stochastic ensemble Kalman filter

Abstract

The ensemble Kalman filter assumes observations to be Gaussian random variables with a pre-specified mean and variance. In practice, observations may also have detection limits, for instance when a gauge has a minimum or maximum value. In such cases, most data assimilation schemes discard out-of-range values, treating them as not a number, with the loss of possibly useful qualitative information. The current work focuses on the development of a data assimilation scheme that tackles observations with a detection limit. We present the Ensemble Kalman Filter Semi-Qualitative (EnKF-SQ) and test its performance against the Partial Deterministic Ensemble Kalman Filter (PDEnKF) of Borup et al.Both are designed to assimilate out-of-range observations explicitly: the out-of-range values are qualitative by nature (inequalities), but one can postulate a probability distribution for them and then update the ensemble members accordingly. The EnKF-SQ is tested within the framework of twin experiments, using both linear and nonlinear toy models. Different sensitivity experiments are conducted to assess the influence of the ensemble size, observation detection limit and number of observations on the performance of the filter. Our numerical results show that assimilating qualitative observations using the proposed scheme improves the overall forecast mean, making it viable for testing on more realistic applications such as sea-ice models.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7251n4h

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-10-25T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 Royal Meteorological Society

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:07:53.353721

Metadata language

eng; USA