Identification

Title

Variations in surface ozone and carbon monoxide in the Kathmandu Valley and surrounding broader regions during SusKat-ABC field campaign: Role of local and regional sources

Abstract

Air pollution resulting from rapid urbanization and associated human activities in the Kathmandu Valley of Nepal has been leading to serious public health concerns over the past 2 decades. These concerns led to a multinational field campaign SusKat-ABC (Sustainable atmosphere for the Kathmandu Valley -Atmospheric Brown Clouds) that measured different trace gases, aerosols and meteorological parameters in the Kathmandu Valley and surrounding regions during December 2012 to June 2013 to understand local-to regional-scale processes influencing air quality of the Kathmandu Valley. This study provides information about the regional distribution of ozone and some precursor gases using simultaneous in situ measurements from a SusKat-ABC supersite at Bode, Nepal, and two Indian sites: a high-altitude site, Nainital, located in the central Himalayan region and a low-altitude site, Pantnagar, located in the Indo-Gangetic Plain (IGP). The diurnal variations at Bode showed a daytime buildup in O-3 while CO shows morning and evening peaks. Similar variations (with lower levels) were also observed at Pantnagar but not at Nainital. Several events of hourly ozone levels exceeding 80 ppbv were also observed at Bode. The CO levels showed a decrease from their peak level of about 2000 ppbv in January to about 680 ppbv in June at Bode. The hourly mean ozone and CO levels showed a strong negative correlation during winter (r(2) = 0.82 in January and r(2) = 0.71 in February), but this negative correlation gradually becomes weaker, with the lowest value in May (r(2) = 0.12). The background O-3 and CO mixing ratios at Bode were estimated to be about 14 and 325 ppbv, respectively. The rate of change of ozone at Bode showed a more rapid increase (similar to 17 ppbv h(-1)) during morning than the decrease in the evening (5-6 ppbv h(-1)), suggesting the prevalence of a semi-urban environ. The lower CO levels during spring suggest that regional transport also contributes appreciably to springtime ozone enhancement in the Kathmandu Valley on top of the local in situ ozone production. We show that regional pollution resulting from agricultural crop residue burning in northwestern IGP led to simultaneous increases in O-3 and CO levels at Bode and Nainital during the first week of May 2013. A biomass-burning-induced increase in ozone and related gases was also confirmed by a global model and balloon-borne observations over Nainital. A comparison of surface ozone variations and composition of light non-methane hydrocarbons among different sites indicated the differences in emission sources of the Kathmandu Valley and the IGP. These results highlight that it is important to consider regional sources in air quality management of the Kathmandu Valley.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d76w9dzw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-08-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:19:28.302975

Metadata language

eng; USA