Weather forecasts by the WRF-ARW model with the GSI data assimilation system in the complex terrain areas of southwest Asia
This paper will first describe the forecasting errors encountered from running the National Center for Atmospheric Research (NCAR) mesoscale model (the Advanced Research Weather Research and Forecasting model; ARW) in the complex terrain of southwest Asia from 1 to 31 May 2006. The subsequent statistical evaluation is designed to assess the model’s surface and upper-air forecast accuracy. Results show that the model biases caused by inadequate parameterization of physical processes are relatively small, except for the 2-m temperature, as compared to the nonsystematic errors resulting in part from the uncertainty in the initial conditions. The total model forecast errors at the surface show a substantial spatial heterogeneity; the errors are relatively larger in higher mountain areas. The performance of 2-m temperature forecasts is different from the other surface variables’ forecasts; the model forecast errors in 2-m temperature forecasts are closely related to the terrain configuration. The diurnal cycle variation of these near-surface temperature forecasts from the model is much smaller than what is observed. Second, in order to understand the role of the initial conditions in relation to the accuracy of the model forecasts, this study assimilated a form of satellite radiance data into this model through the Joint Center for Satellite Data Assimilation (JCSDA) analysis system called the Gridpoint Statistical Interpolation (GSI). The results indicate that on average over a 30-day experiment for the 24- and 48-h (second 24 h) forecasts, the satellite data provide beneficial information for improving the initial conditions and the model errors are reduced to some degree over some of the study locations. The diurnal cycle for some forecasting variables can be improved after satellite data assimilation; however, the improvement is very limited.
document
http://n2t.net/ark:/85065/d75m66q2
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2009-08-01T00:00:00Z
Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:56:36.926337