Identification

Title

Evaluation of the emission inventory for large point emission sources in South Korea by applying measured data from the NASA/NIER KORUS-AQ aircraft field campaign

Abstract

One of the major issues in determining a region's air quality is the uncertainty of large point sources (LPSs) emissions, which significantly affect the local-regional air quality. In this study, the SO2 and NOxemissions of 5 major LPSs in South Korea were evaluated by comparing the emissions-based concentrations employing a Gaussian dispersion model with aircraft-based measurements from DC-8 "around-the-stack" flights through the National Aeronautics and Space Administration (NASA)/National Institute of Environmental Research (NIER) KORea-U.S. Cooperative Domestic Air Quality (KORUS-AQ) aircraft field campaign. The ratio between modeled and measured concentrations for all 5 LPSs ranged between 0.42 and 1.30 and 0.39 and 1.01 for NOx and SO2, respectively. The results for the Boryeong, Dangjin, and Seocheon power plants (PPs), where the locations and sizes of stacks are easier to specify than industrial complexes (Hyundai Steel and Hankook Glass), yielded better performance, which ranged between 0.82 and 1.30 and 0.79 and 1.01 for NOx and SO2. This level of agreement was very encouraging, considering that the modeled concentrations were based on 30-min averaged emissions compared to less-than-a-minute DC-8 around-the-stack measurements. Based on our analysis, the uncertainty of LPS emissions, at least for NOxand SO2, appears to be small, which implies that the point sources inventory emissions are reasonably accurate. The Dangjin PP's analysis reveals that the actual measured emissions should be considered in addition to "the official" inventory amounts to reduce emission uncertainty. This detailed comparative analysis verified the method used for this study. The findings of this study are expected to enhance the performance of future LPS emission inventory assessments. In terms of recommendations, the data from the raw emission inventory should include more clear information about the locations of measured stacks to obtain more accurate emission estimates. In addition, the flight measurement duration should be long enough to fly around several times to reduce uncertainties, and the flight positions and altitudes should be varied. By improving LPS inventories through accurate evaluations, more accurate air quality forecasts and better policies could be made. As a result, it is expected that public health can be improved by reducing the time people are exposed to high concentrations of air pollutants.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7p27355

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-07-11T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:16:23.061010

Metadata language

eng; USA