Identification

Title

An improved parameterization of wind-blown sand flux on Mars that includes the effect of hysteresis

Abstract

Saltation, the wind-driven hopping motion of sand grains, forms dunes and ripples, and ejects fine dust particles into the atmosphere on Mars. Although the wind speed at which saltation is initiated, the “fluid threshold,” has been studied extensively, the wind speed at which saltation is halted, the “impact threshold,” has been poorly quantified for Mars conditions. I present an analytical model of the impact threshold, which is in agreement with measurements and numerical simulations for Earth conditions. For Mars conditions, the impact threshold is approximately an order of magnitude below the fluid threshold, in agreement with previous studies. Saltation on Mars can thus be sustained at wind speeds an order of magnitude less than required to initiate it, leading to the occurrence of hysteresis. I include the effect of hysteresis into an improved parameterization of sand transport on Mars.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7g1619j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-06-25T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:11:04.423480

Metadata language

eng; USA