Identification

Title

Benchmarking simulated precipitation variability amplitude across time scales

Abstract

Objective performance metrics that measure precipitation variability across time scales from subdaily to interannual are presented and applied to Historical simulations of Coupled Model Intercomparison Project phase 5 and 6 (CMIP5 and CMIP6) models. Three satellite-based precipitation estimates (IMERG, TRMM, and CMORPH) are used as reference data. We apply two independent methods to estimate temporal variability of precipitation and compare the consistency in their results. The first method is derived from power spectra analysis of 3-hourly precipitation, measuring forced variability by solar insolation (diurnal and annual cycles) and internal variability at different time scales (subdaily, synoptic, subseasonal, seasonal, and interannual). The second method is based on time averaging and facilitates estimating the seasonality of subdaily variability. Supporting the robustness of our metric, we find a near equivalence between the results obtained from the two methods when examining simulated-to-observed ratios over large domains (global, tropics, extratropics, land, or ocean). Additionally, we demonstrate that our model evaluation is not very sensitive to the discrepancies between observations. Our results reveal that CMIP5 and CMIP6 models in general overestimate the forced variability while they underestimate the internal variability, especially in the tropical ocean and higher-frequency variability. The underestimation of subdaily variability is consistent across different seasons. The internal variability is overall improved in CMIP6, but remains underestimated, and there is little evidence of improvement in forced variability. Increased horizontal resolution results in some improvement of internal variability at subdaily and synoptic time scales, but not at longer time scales.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75t3qb8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-10-15T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:36.651816

Metadata language

eng; USA