Identification

Title

Impact of crop field burning and mountains on heavy haze in the North China Plain: A case study

Abstract

With the provincial statistical data and crop field burning (CFB) activities captured by Moderate Resolution Imaging Spectroradiometer (MODIS), we extracted a detailed CFB emission inventory in the North China Plain (NCP). The WRF-CHEM model was applied to investigate the impact of CFB on air pollution during the period from 6 to 12 October 2014, corresponding to a heavy haze incident with high concentrations of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 mu m). The WRF-CHEM model generally performed well in simulating the surface species concentrations of PM2.5, O-3 and NO2 compared to the observations; in addition, it reasonably reproduced the observed temporal variations of wind speed, wind direction and planetary boundary layer height (PBLH). It was found that the CFB that occurred in southern NCP (SNCP) had a significant effect on PM2.5 concentrations locally, causing a maximum of 34% PM2.5 increase. Under continuous southerly wind conditions, the CFB pollution plume went through a long-range transport to northern NCP (NNCP; with several mega cities, including Beijing, the capital city of China), where few CFBs occurred, resulting in a maximum of 32% PM2.5 increase. As a result, the heavy haze in Beijing was enhanced by the CFB, which occurred in SNCP. Mountains also play significant roles in enhancing the PM2.5 pollution in NNCP through the blocking effect. The mountains blocked and redirected the airflows, causing the pollutant accumulations along the foothills of mountains. This study suggests that the prohibition of CFB should be strict not only in or around Beijing, but also on the ulterior crop growth areas of SNCP. PM2.5 emissions in SNCP should be significantly limited in order to reduce the occurrences of heavy haze events in the NNCP region.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7xg9ssk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-08-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T20:46:24.188946

Metadata language

eng; USA