Evaluation of cold-season precipitation forecasts generated by the hourly updating High-Resolution Rapid Refresh Model
The hourly updating High-Resolution Rapid Refresh (HRRR) model is evaluated with regard to its ability to predict the areal extent of cold-season precipitation and accurately depict the timing and location of regions of snow, rain, and mixed-phase precipitation on the ground. Validation of the HRRR forecasts is performed using observations collected by the Automated Surface Observing System (ASOS) stations across the eastern two-thirds of the United States during the 2010-11 cold season. The results show that the HRRR is able to reliably forecast precipitation extent during the cold season. In particular, the location and areal extent of both snow and rain are very well predicted. Depiction of rain-to-snow transitions and freezing rain is reasonably good; however, the associated evaluation scores are significantly lower than for either snow or rain. The analyses suggest the skill in accurately depicting precipitation extent and phase (i.e., rain, snow, and mixed phase) depends on the size and organization of a weather system. Typically, larger synoptically forced weather systems are better predicted than smaller weather systems, including the associated rain-to-snow transition or freezing-rain areas. Offsets in space or time (i.e., causing misses and false alarms) have a larger effect on the model performance for smaller weather systems.
document
http://n2t.net/ark:/85065/d78c9x57
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2013-08-01T00:00:00Z
Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:04:24.522392