Identification

Title

Performance of the WRF model at the convection-permitting scale in simulating snowfall and lake-effect snow over the Tibetan Plateau

Abstract

This study investigated the performance of the Weather Research Forecasting (WRF) model at 4-km horizontal grid spacing in simulating precipitation, 2 m air temperature (T2), snowfall, and lake-effect snow (October 4-8, 2018) over the Tibetan Plateau (TP). Multiple simulations with different physical parameterization schemes (PPSs), including two planetary boundary layer schemes (Yonsei University and Mellor-Yamada-Janjic), no cumulus and multi-scale Kain-Fritsch, two land surface models (Noah and Noah-MP), and two microphysics schemes (Thompson and Milbrandt), were conducted and compared. Compared with gauge observations, all PPSs simulate mean daily precipitation with mean relative errors (MREs) of 27.7%-53.6%. Besides, spatial correlation coefficients (SCCs) between simulated and observed mean daily precipitation range from 0.56 to 0.71. For simulations of T2, all PPSs perform similarly well, even though the mean cold biases are up to about 3 degrees C. Meanwhile, all PPSs exhibit acceptable performance in simulating spatial distributions of snow depth, snow cover, and snowfall amount, with SCCs of 0.37-0.65 between simulations and observations. However, the WRF simulations significantly overestimate snow depth (similar to 0.4 cm mean error) and snowfall amount (MREs >372%). The Milbrandt scheme slightly outperforms the other PPSs in simulating snow-related variable magnitudes. Due to their inaccurate temperature and airflow modeling over the lake surface and its surroundings, none of the WRF simulations well reproduce the characteristics that more snow occurs over the lake and downwind area. Overall, this study provides a useful reference for future convection-permitting climate modeling of snow or other extreme events when using the WRF model in the TP and other alpine regions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7xd15p2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-08-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Geophysical Union (AGU).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:15:18.037852

Metadata language

eng; USA