Identification

Title

Quantifying uncertainty in source term estimation with tensorflow probability

Abstract

Fast and accurate location and quantification of a dangerous chemical, biological or radiological release plays a significant role in evaluating emergency situations and their consequences. Thanks to the advent of Deep Learning frameworks (e.g. Tensorflow) and new specialized hardware (e.g. Tensor Cores), the excellent fitting ability of Artificial Neural Networks (ANN) has been used by several researchers to model atmospheric dispersion. Despite the high accuracy and fast prediction, regular ANNs do not provide any information about the uncertainty of the prediction. Such uncertainty can be the result of a combination of measurement noise and model architecture. In an urgent decision making situation, the ability to provide fast prediction along with a quantification of the uncertainty is of paramount importance. In this work, a Probabilistic Deep Learning model for source term estimation is presented, using the Tensorflow Probability framework.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7g44tgk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 IEEE.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:08:45.656153

Metadata language

eng; USA