Identification

Title

Classification of cloud particle imagery from aircraft platforms using convolutional neural networks

Abstract

A vast amount of ice crystal imagery exists from a variety of field campaign initiatives that can be utilized for cloud microphysical research. Here, nine convolutional neural networks are used to classify particles into nine regimes on over 10 million images from the Cloud Particle Imager probe, including liquid and frozen states and particles with evidence of riming. A transfer learning approach proves that the Visual Geometry Group (VGG-16) network best classifies imagery with respect to multiple performance metrics. Classification accuracies on a validation dataset reach 97% and surpass traditional automated classification. Furthermore, after initial model training and preprocessing, 10 000 images can be classified in approximately 35 s using 20 central processing unit cores and two graphics processing units, which reaches real-time classification capabilities. Statistical analysis of the classified images indicates that a large portion (57%) of the dataset is unusable, meaning the images are too blurry or represent indistinguishable small fragments. In addition, 19% of the dataset is classified as liquid drops. After removal of fragments, blurry images, and cloud drops, 38% of the remaining ice particles are largely intersecting the image border (>= 10% cutoff) and therefore are considered unusable because of the inability to properly classify and dimensionalize. After this filtering, an unprecedented database of 1 560 364 images across all campaigns is available for parameter extraction and bulk statistics on specific particle types in a wide variety of storm systems, which can act to improve the current state of microphysical parameterizations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70z775k

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:14.457891

Metadata language

eng; USA