Identification

Title

A method for estimating global subgrid-scale orographic gravity-wave temperature perturbations in chemistry-climate models

Abstract

Many chemical processes depend non-linearly on temperature. Gravity-wave-induced temperature perturbations have been shown to affect atmospheric chemistry, but accounting for this process in chemistry-climate models has been a challenge because many gravity waves have scales smaller than the typical model resolution. Here, we present a method to account for subgrid-scale orographic gravity-wave-induced temperature perturbations on the global scale for the Whole Atmosphere Community Climate Model. Temperature perturbation amplitudes (T)over cap> consistent with the model's subgrid-scale gravity wave parameterization are derived and then used as a sinusoidal temperature perturbation in the model's chemistry solver. Because of limitations in the parameterization, we explore scaling of (T)over cap> between 0.6 and 1 based on comparisons to altitude-dependent (T) over cap distributions of satellite and reanalysis data, where we discuss uncertainties. We probe the impact on the chemistry from the grid-point to global scales, and show that the parameterization is able to represent mountain wave events as reported by previous literature. The gravity waves for example, lead to increased surface area densities of stratospheric aerosols. This increases chlorine activation, with impacts on the associated chemical composition. We obtain large local changes in some chemical species (e.g., active chlorine, NOx, N2O5) which are likely to be important for comparisons to airborne or satellite observations, but the changes to ozone loss are more modest. This approach enables the chemistry-climate modeling community to account for subgrid-scale gravity wave temperature perturbations interactively, consistent with the internal parameterizations and are expected to yield more realistic interactions and better representation of the chemistry.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7x06c44

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:14:58.926231

Metadata language

eng; USA