Identification

Title

Evaluation of Noah‐MP performance with available soil information for vertically heterogenous soils

Abstract

The increasing availability of modern digital soil databases provides an opportunity to integrate these data into land surface models (LSMs), such as Noah‐MP, for a more realistic representation of soil in estimating mass and energy flux at the land‐atmosphere boundary. Noah‐MP uses a default soil parameter table and a texturally uniform vertical soil profile to a depth of 2 m. Previous research has revised this soil parameter table, and 95% of the values investigated were suggested to be replaced using updated pedotransfer functions and new datasets. In addition to updated parameters, most LSMs do not consider vertical heterogeneity in soil texture despite the widespread distribution of these soils globally. This research assessed both (1) revisions to the soil parameter table and (2) vertical soil heterogeneity, including the presence of bedrock, on simulated water and energy fluxes. At three locations across Texas, plant‐available water (PAW) estimates from Noah‐MP simulations were evaluated using in situ measurements. Due to the lack of water and energy flux data, soil water content values simulated by Noah‐MP were compared with the output from another well‐established model, Root Zone Water Quality Model 2 (RZWQM2). Results showed improving representation of soil improved Nash–Sutcliff efficiency coefficient, model bias, and root mean square difference of Noah‐MP simulated PAW when compared with measured PAW and RZWQM2 simulated PAW. A maximum difference in annual evapotranspiration of 150 mm between simulations was observed. These results demonstrate the need for better accounting of soil knowledge in LSMs for modeling mass and energy exchange at the land‐atmosphere boundaries.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7kk9h54

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:53:52.555225

Metadata language

eng; USA