Identification

Title

A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid

Abstract

A conservative semi-Lagrangian cell-integrated transport scheme (CSLAM) was recently introduced, which ensures global mass conservation and allows long timesteps, multi-tracer efficiency, and shape preservation through the use of reconstruction filtering. This method is fully two-dimensional so that it may be easily implemented on non-cartesian grids such as the cubed-sphere grid. We present a flux-form implementation, FF-CSLAM, which retains the advantages of CSLAM while also allowing the use of flux-limited monotonicity and positivity preservation and efficient tracer sub-cycling. The methods are equivalent in the absence of flux limiting or reconstruction filtering. FF-CSLAM was found to be third-order accurate when an appropriately smooth initial mass distribution and flow field (with at least a continuous second derivative) was used. This was true even when using highly deformational flows and when the distribution is advected over the singularities in the cubed sphere, the latter a consequence of the full two-dimensionality of the method. Flux-limited monotonicity preservation, which is only available in a flux-form method, was found to be both less diffusive and more efficient than the monotone reconstruction filtering available to CSLAM. Despite the additional overhead of computing fluxes compared to CSLAM's cell integrations, the non-monotone FF-CSLAM was found to be at most only 40% slower than CSLAM for Courant numbers less than one, with greater overhead for successively larger Courant numbers.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7v989n8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-02-20T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

NOTICE: This is the author's version of a work submitted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T14:49:25.414883

Metadata language

eng; USA