Identification

Title

Revisiting the hail radar reflectivity-kinetic energy flux relation by combining T-matrix and Discrete Dipole Approximation calculations to size distribution observations

Abstract

The retrieval of hail kinetic energy with weather radars or its simulation in numerical models is challenging because of the shape complexity and variable density of hailstones. We combine 3D scans of individual hailstones with measurements of the particle size distributions (PSD) and T-matrix calculations to understand how hail reflectivity Z changes when approximating hailstones as spheroids, as compared to the realistic shapes obtained by 3D scanning technology. Additionally, recent terminal velocity relations are used to compare Z to the hail kinetic energy flux E-.. We parameterize the hail backscattering cross sections at L, S, C, and X bands as a function of size between 0.5 and 5.0 cm, matching the range of the observed PSDs. The scattering calculations use the T-matrix method for size parameters below 1.0 and the discrete dipole approximation (DDA) method otherwise. The DDA calculations are done for 48 digital models of realistic hailstones of sizes between 1 and 5 cm. The DDA cross sections are calculated for multiple orientations and averaged assuming a fully random orientation distribution to provide a single value per hailstone. The T-matrix reflectivity assuming solid ice spheres presents negligible differences to DDA results for size parameters below 1.0. Therefore, T matrix was used to fill in the gaps left by the DDA calculations. The results are mapped to the same size bins of the observed PSDs, allowing the calculation of the radar reflectivity. This is then correlated to E-., allowing a potential improvement of past retrieval methods of E. from Z in multiple wavelengths.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7fb56s9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-04-26T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:35.681373

Metadata language

eng; USA