Identification

Title

Integration and execution of Community Land Model Urban (CLMU) in a containerized environment

Abstract

<p><span style="-webkit-text-stroke-width:0px;color:rgb(31, 31, 31);display:inline !important;float:none;font-family:ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif, sans-serif;font-size:16px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">The Community Land Model Urban (CLMU) is a process-based numerical urban climate model that simulates the interactions between the atmosphere and urban surfaces, serving as a powerful tool for the convergence of urban and climate science research. However, CLMU presents significant challenges due to the complexities of model installation, environment and case configuration, and generating model inputs. To address these challenges, a toolkit was developed, including (1) an operating system-independent containerized application developed to streamline the execution of CLMU and (2) a Python-based tool used to interface with the containerized CLMU and create urban surface and atmospheric forcing data. This toolkit enables users to simulate urban climate and explore climate-related variables such as urban building energy consumption and human thermal stress. It also supports the simulation under future climate conditions and the exploration of urban climate responses to various surface properties, providing a foundation for evaluating urban climate adaptation strategies.</span></p>

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7j38xzw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright and other restrictions information is unknown.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:47:36.578311

Metadata language

eng; USA