Identification

Title

Winter and spring climate explains a large portion of interannual variability and trend in western U.S. summer fire burned area

Abstract

This study predicts summer (June-September) fire burned area across the western United States (U.S.) from 1984 to 2020 using ensembles of statistical models trained with pre-fire season climate conditions. Winter and spring climate conditions alone explain up to 53% of the interannual variability and 58% of the increasing trend of observed summer burned area, which suggests that climate conditions in antecedent seasons have been an important driver to broad-scale changes in summer fire activity in the western U.S. over the recent four decades. Relationships between antecedent climate conditions with summer burned area are found to be strongest over non-forested and middle-to-high elevation areas (1100-3300 m). Statistical models that predict summer burned area using both antecedent and fireseason climate conditions have improved performance, explaining 69% of the interannual variability and 83% of the increasing trend of observed burned area. Among the antecedent climate predictors, vapor pressure deficit averaged over winter and spring plays the most critical role in predicting summer fire burned area. Spring snow drought area is found to be an important antecedent predictor for summer burned area over snow-reliant regions in the nonlinear statistical modeling framework used in this analysis. Namely, spring snow drought memory is realized through dry anomalies in land (soil and fuel) and atmospheric moisture during summer, which favours fire activity. This study highlights the important role of snow drought in subseasonal-to-seasonal forecasts of summer burned area over snow-reliant areas.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7057kmm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:04:03.130655

Metadata language

eng; USA