Identification

Title

On predicting offshore hub height wind speed and wind power density in the Northeast US coast using high-resolution WRF model configurations during anticyclones coinciding with wind drought

Abstract

We investigated the predictive capability of various configurations of the Weather Research and Forecasting (WRF) model version 4.4, to predict hub height offshore wind speed and wind power density in the Northeast US wind farm lease areas. The selected atmospheric conditions were high-pressure systems (anticyclones) coinciding with wind speed below the cut-in wind turbine threshold. There are many factors affecting the potential of offshore wind power generation, one of them being low winds, namely wind droughts, that have been present in future climate change scenarios. The efficiency of high-resolution hub height wind prediction for such events has not been extensively investigated, even though the anticipation of such events will be important in our increased reliance on wind and solar power resources in the near future. We used offshore wind observations from the Woods Hole Oceanographic Institution's (WHOI) Air-Sea Interaction Tower (ASIT) located south of Martha's Vineyard to assess the impact of the initial and boundary conditions, number of model vertical levels, and inclusion of high-resolution sea surface temperature (SST) fields. Our focus has been on the influence of the initial and boundary conditions (ICBCs), SST, and model vertical layers. Our findings showed that the ICBCs exhibited the strongest influence on hub height wind predictions above all other factors. The NAM/WRF and HRRR/WRF were able to capture the decreased wind speed, and there was no single configuration that systematically produced better results. However, when using the predicted wind speed to estimate the wind power density, the HRRR/WRF had statistically improved results, with lower errors than the NAM/WRF. Our work underscored that for predicting offshore wind resources, it is important to evaluate not only the WRF predictive wind speed, but also the connection of wind speed to wind power.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7h70m2j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-05-29T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:01:52.528741

Metadata language

eng; USA