Quadrature-free implementation of a discontinuous Galerkin global shallow-water model via flux correction procedure
The discontinuous Galerkin (DG) discretization relies on an integral (weak) formulation of the hyperbolic conservation law, which leads to the evaluation of several surface and line integrals for multidimensional problems. An alternative formulation of the DG method is possible under the flux reconstruction (FR) framework, where the equations are solved in differential form and the discretization is free from quadrature rules, resulting in computationally efficient algorithms. The author has implemented a quadrature-free form of the nodal DG method based on the FR approach combined with spectral differencing (SD), in a shallow-water (SW) model employing cubed-sphere geometry. The performance of the SD model is compared with the regular nodal DG variant of the SW model using several benchmark tests, including a viscous test case. A positivity-preserving local filter is tested for SD advection that removes spurious oscillations while being conservative and accurate. In this implementation, the SD formulation is found to be 18% faster than the DG method for inviscid SW tests cases and 24% faster for the viscous case. The results obtained by the SD formulation are on par with the regular nodal DG formulation in terms of accuracy and convergence.
document
http://n2t.net/ark:/85065/d74t6khp
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-04-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:03:02.454560