Identification

Title

Health risks of warming of 1.5 °C, 2 °C, and higher, above pre-industrial temperatures

Abstract

Background: In response to the Paris Agreement under the United Nations Framework Convention on Climate Change, the research community was asked to estimate differences in sectoral-specific risks at 1.5 degrees C and 2 degrees C increases in global mean surface air temperature (SAT) above pre-industrial temperatures. Projections of the health risks of climate change typically focus on time periods and not on the magnitude of temperature change. Objective : Summarize projections of health risks associated with temperature extremes and occupational heat stress, air quality, undernutrition, and vector-borne diseases to estimate how these risks would differ at increases in warming of 1.5 °C, 2 °C, and higher. Methods: A comprehensive search strategy included English language publications since 2008 projecting health risks of climate change identified through established databases. Of 109 relevant publications, nearly all were for future time periods (e.g. in 2030 and 2050) rather than future SAT thresholds. Time periods were therefore converted to temperature changes based on the models and scenarios used. Results: Warming of 1.5 °C is reached in about the 2030s for all multi-model means under all scenarios and warming of 2 °C is reached in about the 2050s under most scenarios. Of the 40 studies projecting risks at 1.5 and 2 °C increases of SAT, risks were higher at 2 °C for adverse health consequences associated with exposures to high ambient temperatures, ground-level ozone, and undernutrition, with regional variations. Risks for vector-borne diseases could increase or decrease with higher global mean temperatures, depending on regional climate responses and disease ecology. Conclusions: The burden of many climate-sensitive health risks are projected to be greater at an increase of 2 °C SAT above pre-industrial temperatures than at 1.5 °C. Future projection studies should report results based on changes in global and regional mean SATs and time, to facilitate quantitative analyses of health risks and to inform the level of ambition and timing of adaptation interventions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7542rcv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-06-14T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:37:54.936897

Metadata language

eng; USA