Identification

Title

Numerical modeling and measurement of Apis mellifera radar scattering properties

Abstract

This study investigates a means through which commercially available computational electromagnetic modeling software can be used to predict radar cross sections (RCSs) of airborne organisms of interest as a preliminary step toward enabling detection and tracking of these organisms. This work aims to analyze this framework for the specialized case of the honey bee ( Apis mellifera ), given its critical role in food security as a major pollinator of agricultural crops. A Method-of-Moment (MoM) solver made available by Altair's FEKO is used to conduct the analysis over varying frequencies, illumination angles, and polarizations. A high degree of correlation between measured and modeled cross sections is noted. Maximum RCS root-mean-square errors (RMSEs) between the two are approximately 4 and 5 dB relative to 1 m2 (dBsm) for Horizontal polarization (H-pol) and Vertical polarization (V-pol) X-band measurements, respectively. Findings of this study also highlight the sensitivity of both modeled and measured RCS estimates to the dielectric properties of honey bees and the corrupting effects that this may have if not accounted for accurately, where errors are shown to increase from 2 to 5 dBsm, but without significantly corrupting the overall RCS azimuth profile.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7gm8bv2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-02-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:09:50.245027

Metadata language

eng; USA