Identification

Title

Sensitivity of tropospheric oxidants to biomass burning emissions: Implications for radiative forcing

Abstract

Biomass burning is one of the largest sources of trace gases and aerosols to the atmosphere and has profound influence on tropospheric oxidants and radiative forcing. Using a fully coupled chemistry-climate model (GFDL AM3), we find that co-emission of trace gases and aerosol from present-day biomass burning increases the global tropospheric ozone burden by 5.1% and decreases global mean OH by 6.3%. Gas and aerosol emissions combine to increase CH4 lifetime nonlinearly. Heterogeneous processes are shown to contribute partly to the observed lower deltaO3/deltaCO ratios in northern high latitudes versus tropical regions. The radiative forcing from biomass burning is shown to vary nonlinearly with biomass burning strength. At present-day emission levels, biomass burning produces a net radiative forcing of -0.19 W/m2 (-0.29 from short-lived species, mostly aerosol direct and indirect effects, +0.10 from CH4- and CH4-induced changes in O3 and stratospheric H2O) but increases emissions to over 5 times present levels would result in a positive net forcing.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70k29f9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-03-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:09:51.436214

Metadata language

eng; USA