Identification

Title

The relative contributions of alpine and subalpine ecosystems to the water balance of a mountainous, headwater catchment

Abstract

Climate change is affecting the hydrology of high-elevation mountain ecosystems, with implications for ecosystem functioning and water availability to downstream populations. We directly and continuously measured precipitation and evapotranspiration (ET) from both subalpine forest and alpine tundra portions of a single catchment, as well as discharge fluxes at the catchment outlet, to quantify the water balance of a mountainous, headwater catchment in Colorado, USA. Between 2008 and 2012, the water balance closure averaged 90% annually, and the catchment ET was the largest water output at 66% of precipitation. Alpine ET was greatest during the winter, in part because of sublimation from blowing snow, which contributed from 27% to 48% of the alpine, and 6% to 9% of the catchment water balance, respectively. The subalpine ET peaked in summer. Alpine areas generated the majority of the catchment discharge, despite covering only 31% of the catchment area. Although the average annual alpine runoff efficiency (discharge/precipitation; 40%) was greater than the subalpine runoff efficiency (19%), the subalpine runoff efficiency was more sensitive to changes in precipitation. Inter-annual analysis of the evaporative and dryness indices revealed persistent moisture limitations at the catchment scale, although the alpine alternated between energy-limited and water-limited states in wet and dry years. Each ecosystem generally over-generated discharge relative to that expected from a Budyko-type model. The alpine and catchment water yields were relatively unaffected by annual meteorological variability, but this interpretation was dependent on the method used to quantify potential ET. Our results indicate that correctly accounting for dissimilar hydrological cycling above and below alpine treeline is critical to quantify the water balance of high-elevation mountain catchments over periods of meteorological variability.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7j67j7k

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-10-30T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2015 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:03:56.735866

Metadata language

eng; USA