Identification

Title

Development of near-cloud turbulence diagnostics based on a convective gravity wave drag parameterization

Abstract

We propose near-cloud turbulence (NCT) diagnostics for use in aviation turbulence forecasting, using a convective gravity wave drag (CGWD) parameterization scheme. The NCT diagnostics are obtained based on (i) CGWD and (ii) minimum Richardson number including the effects of convective gravity waves (CGWs). The feasibility of the NCT diagnostics is examined using numerical simulation results of real turbulence cases related to the breaking of CGWs, which occurred over eastern Missouri and southwestern Illinois in the United States on 9–10 March 2006, and near Fukuoka, Japan, on 2 September 2007. On 9–10 March 2006, several instances of moderate-or-greater (MOG)-intensity turbulence were reported above shallow but active convection over the central United States, while on 2 September 2007, severe turbulence was encountered above dissipating convection near Fukuoka, Japan. The high-resolution simulation results for both turbulence events show that CGWs and their breaking provide favorable environments for turbulence generation. For two simulated real cases, nonzero NCT diagnostics are reasonably well matched with observed turbulence encounters. The global distribution of CGWD calculated using global reanalysis data revealed a high potential of MOG turbulence in the tropics and the midlatitudes, which can be clearly distinguished from the traditional clear-air turbulence index where high potentials of MOG turbulence are diagnosed in the midlatitudes associated with the strong vertical wind shears near jet streams. These results imply that the proposed NCT diagnostics are useful for forecasting turbulence related to the breaking of CGWs, especially, in tropical regions.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7m0489k

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:08:52.724028

Metadata language

eng; USA