Frontal and radar refractivity analyses of the dryline on 11 June 2002 during IHOP
An analysis of a dryline that did not initiate convection during the observational period is presented. The dryline was the weakest kinematic boundary observed during the International H2O Project (IHOP), but was associated with a large moisture gradient. Detailed dual-Doppler wind syntheses from an airborne Doppler radar were combined with radar refractivity measurements providing a rare opportunity to examine both the kinematic and moisture characteristics of this boundary. The radar thin line denotes the approximate kinematic position of the dryline and was quasi-linear on this day. In contrast, the moisture pattern across the dryline was more complex than was suggested by the characteristics of the thin line. Prominent in the horizontal plots was the presence of narrow (few kilometers wide) channels of moisture extending 15–20 km into the dry air mass. Past studies have suggested that echo thin lines observed in the clear air can be used as a proxy for delineating the moisture contrast across the dryline. In contrast, the “moisture extrusions” were present even though the thin line was quasi-linear and were located in weak-echo regions along the thin line. It is hypothesized that transverse rolls developed at an angle to the boundary layer winds and intersected the dryline. The kinematic airflow associated with these rolls could have protected the moist tongues from the eroding effect of the dry flow west of the dryline. The moisture extrusions appear to diminish with time as they mix with the surrounding dry air.
document
http://n2t.net/ark:/85065/d70c4w8s
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-01-01T00:00:00Z
Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:27:10.009280