Identification

Title

Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004–2005

Abstract

The work presented here evaluates polar stratospheric ozone simulations from the Whole Atmosphere Community Climate Model (WACCM) for the Arctic winter of 2004–2005. We use the Specified Dynamics version of WACCM (SD-WACCM), in which temperatures and winds are nudged to meteorological assimilation analysis results. Model simulations of ozone and related constituents generally compare well to observations from the Earth Observing System Microwave Limb Sounder (MLS). At most times, modeled ozone agrees with MLS data to within ~10%. However, a systematic high bias in ozone in the model of ~18% is found in the lowermost stratosphere in March. We attribute most of this ozone bias to too little heterogeneous processing of halogens late in the winter. We suggest that the model under-predicts ClONO2 early in the winter, which leads to less heterogeneous processing and too little activated chlorine. Model HCl could also be overestimated due to an underestimation of HCl uptake into supercooled ternary solution (STS) particles. In late winter, the model overestimates gas-phase HNO3, and thus NOy, which leads to an over-prediction of ClONO2 (under-prediction of activated chlorine). A sensitivity study, in which temperatures for heterogeneous chemistry reactions were reduced by 1.5 K, shows significant improvement of modeled ozone. Chemical ozone loss is inferred from the MLS observations using the pseudo-passive subtraction approach. The inferred ozone loss using this method is in agreement with or less than previous independent results for the Arctic winter of 2004–2005, reaching 1.0 ppmv on average and up to 1.6 ppmv locally in the polar vortex.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7fn172w

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-03-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:54:09.066394

Metadata language

eng; USA