Identification

Title

What improves evacuations: Exploring the hurricane-forecast-evacuation system dynamics using an agent-based framework

Abstract

The hurricane-forecast-evacuation system is complex and dynamic, making it difficult to diagnose potential challenges and implement effective intervention strategies to ensure successful evacuations for everyone. Here we use an agent-based modeling framework to explore how changing different components of the system affects key evacuation outcomes. Called the forecasting laboratory for exploring the evacuation-system (FLEE), this modeling framework integrates high-level representations of the natural hazard (hurricane), the human system (information flow, evacuation decisions), the built environment (road infrastructure), and connections between elements (forecasts and warning information, traffic). Using FLEE, we investigate the simulated effects of changing the number of cars on the road network (changing evacuation demand), implementing approximations to different evacuation management strategies and policies (contraflow, evacuation order timing), and changing population characteristics (population growth and distribution), all for two real scenarios (Irma, Dorian) and one simulated storm (rapid-onset version of Irma). After comparing and validating FLEE's evacuation outcomes with real-world empirical data, we use FLEE to explore how simulated changes impact evacuation success overall, how the changes compare, and how impacts from the changes vary across forecast scenarios and regions. Through the experiments, we demonstrate the power of these types of frameworks as tools for exploring the forecast-evacuation system across many scenarios, and identify potential next steps to better support researchers, practitioners, and policymakers.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7nz8cp7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:13:11.986708

Metadata language

eng; USA