Identification

Title

Assessment of uncertainty sources in snow cover simulation in the Tibetan Plateau

Abstract

Snow cover over the Tibetan Plateau (TP) plays an important role in Asian climate. State-of-the-art models, however, show significant simulation biases. In this study, we assess the main uncertainty associated with model physics in snow cover modeling over the TP using ground-based observations and high-resolution snow cover satellite products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and FengYun-3B (FY3B). We first conducted 10-km simulations using the Noah with multiparameterization (Noah-MP) land surface model by optimizing physics-scheme options, which reduces 8.2% absolute bias of annual snow cover fraction (SCF) compared with the default model settings. Then, five SCF parameterizations in Noah-MP were optimized and assessed, with three of them further reducing the annual SCF biases from around 15% to less than 2%. Thus, optimizing SCF parameterizations appears to be more important than optimizing physics-scheme options in reducing the uncertainty of snow modeling. As a result of improved SCF, the positive bias of simulated surface albedo decreases significantly compared to the GLASS albedo data, particularly in high-elevation regions. This substantially enhances the absorbed solar radiation and further reduces the annual mean biases of ground temperature from -3.5 to -0.8 degrees C and snow depth from 4.2 to 0.2 mm. However, the optimized model still overestimates SCF in the western TP and underestimates SCF in the eastern TP. Further analysis using a higher-resolution (4 km) simulation driven by topographically adjusted air temperature shows slight improvement, suggesting a rather limited contribution of the finer-scale land surface characteristics to SCF uncertainty.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d76m3b3t

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-09-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:10:35.613233

Metadata language

eng; USA