Identification

Title

Geospace Environment Modeling 2008-2009 challenge: Geosynchronous magnetic field

Abstract

In this paper the metrics-based results of the inner magnetospheric magnetic field part of the 2008-2009 GEM Metrics Challenge are reported. The Metrics Challenge asked modelers to submit results for four geomagnetic storm events and five different types of observations that can be modeled by statistical or climatological or physics-based (e. g., MHD) models of the magnetosphere-ionosphere system. We present the results of 12 model settings that were run at the Community Coordinated Modeling Center and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations, we use direct comparisons between the strength of the measured magnetic field (B), the sine of the elevation angle Θ(xz) (τ), and the spectral power of fluctuations for both quantities. We find that model rankings vary widely by type of variable and skill score used. None of the models consistently performs best for all events. We find that empirical models perform well for weak storm events, and physics-based (magnetohydrodynamic) models are better for strong storm events. Within a series of runs of the same model we find that higher resolution may not always improve results unless more physics of the inner magnetosphere, such as the kinetic description of the ring current, is included.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7pr7wkz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-04-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2011 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T14:48:18.254883

Metadata language

eng; USA