Identification

Title

Annual cycle in upper-ocean heat content and the global energy budget

Abstract

As a major component of Earth's energy budget, ocean heat content (OHC) plays a vital role in buffering climate change. The annual cycle is the most prominent change in OHC but has always been removed to study variations and changes in Earth's energy budget. Here, we investigate the annual cycle of the upper-2000-m OHC at regional to global scales and assess the robustness of the signals using the spread of multiple observational products. The potential drivers are also investigated by comparing the annual OHC signal with the corresponding change in top-of-atmosphere ra-diation, surface heat flux, ocean heat divergence, and meridional heat transport. Results show that the robust signal of an-nual OHC change is significant down to a 1000-m depth globally and can reach down to 1500 m in some areas such as the tropical ocean. The global OHC (0-1500 m) changes from positive anomalies within September-February to negative anomalies within March-August, mainly because of the larger ocean area in the Southern Hemisphere and the seasonal migration of solar irradiance. Owing to the huge ocean heat capacity, the annual cycle of OHC dominates that of the global energy budget. The difference among the OHC annual cycles in the three major ocean basins is mainly attributed to ocean heat transport, especially in the tropics. In the upper 1500 m at mid-and high latitudes and in the upper 50 m of the tropics, the net sea surface heat flux dominates the OHC annual cycle, while in the tropics below 50 m, wind-driven Ekman heat transport associated with the geostrophic flow is the main driver.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kd22x7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:23:23.366643

Metadata language

eng; USA