Estimation of energy budget of ionosphere-thermosphere system during two CIR-HSS events: observations and modeling
We analyze the energy budget of the ionosphere-thermosphere (IT) system during two High-Speed Streams (HSSs) on 22-31 January, 2007 (in the descending phase of solar cycle 23) and 25 April-2 May, 2011 (in the ascending phase of solar cycle 24) to understand typical features, similarities, and differences in magnetosphere-ionosphere-thermosphere (IT) coupling during HSS geomagnetic activity. We focus on the solar wind energy input into the magnetosphere (by using coupling functions) and energy partitioning within the IT system during these intervals. The Joule heating is estimated empirically. Hemispheric power is estimated based on satellite measurements. We utilize observations from TIMED/SABER (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) to estimate nitric oxide (NO) and carbon dioxide (CO₂) cooling emission fluxes. We perform a detailed modeling study of these two similar HSS events with the Global Ionosphere-Thermosphere Model (GITM) and different external driving inputs to understand the IT response and to address how well the model reproduces the energy transport. GITM is run in a mode with forecastable inputs. It is shown that the model captures the main features of the energy coupling, but underestimates NO cooling and auroral heating in high latitudes. Lower thermospheric forcing at 100 km altitude is important for correct energy balance of the IT system. We discuss challenges for a physics-based general forecasting approach in modeling the energy budget of moderate IT storms caused by HSSs.
document
http://n2t.net/ark:/85065/d7qv3p31
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-04-26T00:00:00Z
Copyright 2016 Authors. This work is distributed under the Creative Commons Attribution 3.0 License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:01:32.718992