Identification

Title

Rolling DICE to advance knowledge of land-atmosphere interactions

Abstract

The Diurnal Land–Atmosphere Coupling Experiment (DICE) aims to explore the complex interactions between the land surface and atmospheric boundary layer, which are generally not well understood and difficult to isolate in models. The project involves over 10 different models, combining expertise from both land‐surface and atmospheric boundary‐layer modelling groups. A simple three‐stage methodology is designed to assess land–atmosphere feedbacks. Stage 1: the individual components are assessed in isolation, driven and evaluated against observational data; stage 2: the impact of coupling is investigated; stage 3: the sensitivity of the stand‐alone models to variations in driving data is explored. For this initial study, a 3‐day clear‐sky period in the mid‐west United States over, an assumed simple, predominantly grass surface was simulated using data from the CASES‐99 field campaign. Key conclusions from the study include: (1) the memory of vegetation state within land‐surface models needs attention; (2) the height of atmospheric forcing for land‐surface models is important, particularly for the nocturnal boundary layer, and this has implications for both observations and vertical resolution for atmospheric models; (3) land–atmosphere feedbacks reduce errors in simulated surface fluxes at the expense of the accuracy of the variables that the models are designed to simulate (e.g., temperature, humidity, and wind speed); (4) problems remain in representing the stable boundary layer in atmospheric models; (5) the mixing of temperature and humidity within the boundary layer may need to be represented separately; (6) differences in daytime profiles of heat, moisture, and momentum between models are mainly due to the way the models erode the inversion at the top of the boundary layer, rather than differences in the surface fluxes. Resultant variations in modelled boundary‐layer heights have a substantial impact on relative humidity and could partially explain variations in coupling strength between models in the Global Land–Atmosphere Coupling Experiment.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7qv3rxm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-03-04T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:53:42.619661

Metadata language

eng; USA