Identification

Title

An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS

Abstract

Two important questions are addressed in this paper using the Global Ensemble Forecast System (GEFS) from the National Centers for Environmental Prediction (NCEP): (1) How many ensemble members are needed to better represent forecast uncertainties with limited computational resources? (2) What is the relative impact on forecast skill of increasing model resolution and ensemble size? Two-month experiments at T126L28 resolution were used to test the impact of varying the ensemble size from 5 to 80 members at the 500-hPa geopotential height. Results indicate that increasing the ensemble size leads to significant improvements in the performance for all forecast ranges when measured by probabilistic metrics, but these improvements are not significant beyond 20 members for long forecast ranges when measured by deterministic metrics. An ensemble of 20 to 30 members is the most effective configuration of ensemble sizes by quantifying the tradeoff between ensemble performance and the cost of computational resources. Two representative configurations of the GEFS--the T126L28 model with 70 members and the T190L28 model with 20 members, which have equivalent computing costs--were compared. Results confirm that, for the NCEP GEFS, increasing the model resolution is more (less) beneficial than increasing the ensemble size for a short (long) forecast range.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7qr4xqb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012, Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-15T21:38:23.971489

Metadata language

eng; USA