Identification

Title

On the seasonal prediction of the western United States El Niño precipitation pattern during the 2015/16 winter

Abstract

A "typical" El Nino leads to wet (dry) wintertime anomalies over the southern (northern) half of the Western United States (WUS). However, during the strong El Nino of 2015/16, the WUS winter precipitation pattern was roughly opposite to this canonical (average of the record) anomaly pattern. To understand why this happened, and whether it was predictable, we use a suite of high-resolution seasonal prediction experiments with coupled climate models. We find that the unusual 2015/16 precipitation pattern was predictable at zero-lead time horizon when the ocean/atmosphere/land components were initialized with observations. However, when the ocean alone is initialized the coupled model fails to predict the 2015/16 pattern, although ocean initial conditions alone can reproduce the observed WUS precipitation during the 1997/98 strong El Nino. Further observational analysis shows that the amplitudes of the El Nino induced tropical circulation anomalies during 2015/16 were weakened by about 50% relative to those of 1997/98. This was caused by relative cold (warm) anomalies in the eastern (western) tropical Pacific suppressing (enhancing) deep convection anomalies in the eastern (western) tropical Pacific during 2015/16. The reduced El Nino teleconnection led to a weakening of the subtropical westerly jet over the southeast North Pacific and southern WUS, resulting in the unusual 2015/16 winter precipitation pattern over the WUS. This study highlights the importance of initial conditions not only in the ocean, but in the land and atmosphere as well, for predicting the unusual El Nino teleconnection and its influence on the winter WUS precipitation anomalies during 2015/16.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72r3vkf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:20:58.197027

Metadata language

eng; USA