Identification

Title

Global evolution of Birkeland currents on 10 min timescales: MHD simulations and observations

Abstract

In this paper we compare time-dependent global ionospheric field-aligned current (FAC) patterns on 10 min timescales inferred from the Active Magnetosphere and Polar Electrodynamics Response Experiment (AMPERE) with the high-resolution Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. The improved LFM model yields temporally varying FAC patterns with a fine structure on the sub-100 km scale. The goal of the study is to explore the responses of observed and simulated FAC patterns and underlying magnetic perturbations to a succession of rapid transitions in the solar wind and Interplanetary Magnetic Field (IMF) parameters. To drive the simulations, we use the upstream Wind and Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements recorded on 3 August 2010. For the time interval of interest (~40 min following the impact of an interplanetary shock), the IMF is characterized by a BZ rotation from southward to northward direction under negative BY conditions. Through this case study analysis, it is found that the simulations have generally reproduced the salient characteristics of both the morphology and dynamics of the AMPERE FAC patterns. Due to the high resolution of the global model, the peak current densities are found to significantly (by a factor of 2-4) exceed those obtained from AMPERE. As a further quantitative analysis, the low-altitude magnetic perturbations measured by Iridium spacecraft and used to derive the AMPERE 2-D FAC patterns are also compared with the magnetic field variations calculated from the simulations. It is found that outside of localized regions of peak current densities, which mainly occur on the dayside and can fall between the Iridium tracks, the simulated magnetic perturbations closely follow the Iridium measurements. This demonstrates, in particular, that there is no systematic bias in the simulations to overestimate the magnetic perturbations and corresponding FAC densities. Overall, our results demonstrate that given sufficient resolution, contemporary global MHD models are capable of reproducing observed features of global ionospheric FAC distributions. This, in particular, suggests the feasibility of potential efforts to assimilate AMPERE observations in global magnetospheric models.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qc04dg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:53:39.229529

Metadata language

eng; USA