Identification

Title

Electron temperature climatology at Millstone Hill and Arecibo

Abstract

In this paper, ionospheric electron temperature (Te) data for more than two solar cycles measured by the incoherent scatter radars (ISR) at Millstone Hill (42.6°N, 71.5°W) and Arecibo (18.3°N, 66.7°W) are compared with the theoretical Te calculated from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (NCAR-TIEGCM) to investigate the temporal variations of Te. The comparisons are made for both low and high solar activity conditions and for three seasons: equinox, summer, and winter. The observations show that the diurnal variation of Te is characterized by morning and evening peaks at Arecibo and by a morning peak at Millstone Hill. The occurrence and strength of the peaks at Arecibo are significantly different from those at Millstone Hill. Daytime Te tends to increase with solar activity at both stations below ∼300 km. Te above 300 km generally decreases with solar activity; however, it increases with solar activity in equinox and summer at Arecibo, whereas it does so only in summer at Millstone Hill. The TIEGCM model can reproduce these variations. However, the modeled evening peak is weaker than that from observations at Arecibo. The simulations show that the daytime bulge of Te tends to occur at low latitudes and high solar activity, as seen in the observations, and the significant morning peak at low solar activity over Arecibo is associated with the equatorial anomaly. Moreover, an interesting feature predicted by the model is that the midday Te at the F2 peak height increases with solar activity when F10.7 values are less than about 100 × 10&#8315²² W m&#8315² Hz⁻¹ or larger than 190 × 10&#8315²² W m&#8315² Hz⁻¹1 at Millstone Hill; so does at Arecibo when F10.7 values are larger than 100 × 10&#8315²² W m&#8315² Hz⁻¹. As a result, a positive correlation between daytime Te and Ne occurs under these conditions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d70p107j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-02-09T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:03:12.291289

Metadata language

eng; USA