Identification

Title

Simulation, modeling, and dynamically based parameterization of organized tropical convection for global climate models

Abstract

A new approach for treating organized convection in global climate models (GCMs) referred to as multiscale coherent structure parameterization (MCSP) introduces physical and dynamical effects of organized convection that are missing from contemporary parameterizations. The effects of vertical shear are approximated by a nonlinear slantwise overturning model based on Lagrangian conservation principles. Simulation of the April 2009 Madden-Julian oscillation event during the Year of Tropical Convection (YOTC) over the Indian Ocean using the Weather Research and Forecasting (WRF) Model at 1.3-km grid spacing identifies self-similar properties for squall lines, MCSs, and superclusters embedded in equatorial waves. The slantwise overturning model approximates this observed self-similarity. The large-scale effects of MCSP are examined in two categories of GCM. First, large-scale convective systems simulated in an aquaplanet model are approximated by slantwise overturning with attention to convective momentum transport. Second, MCSP is utilized in the Community Atmosphere Model, version 5.5 (CAM5.5), as tendency equations for second-baroclinic heating and convective momentum transport. The difference between MCSP and CAM5.5 is a direct measure of the global effects of organized convection. Consistent with TRMM measurements, the MCSP generates large-scale precipitation patterns in the tropical warm pool and the adjoining locale; improves precipitation in the intertropical convergence zone (ITCZ), South Pacific convergence zone (SPCZ), and Maritime Continent regions; and affects tropical wave modes. In conclusion, the treatment of organized convection by MCSP is salient for the next generation of GCMs.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7f47r26

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:49:14.071301

Metadata language

eng; USA