Identification

Title

Magnetosphere‐ionosphere coupling via prescribed field‐aligned current simulated by the TIEGCM

Abstract

The magnetosphere-ionosphere (MI) coupling is crucial in modeling the thermosphere-ionosphere (TI) response to geomagnetic activity. In general circulation models (GCMs) the MI coupling is typically realized by specifying the ion convection and auroral particle precipitation patterns from for example, empirical or assimilative models. Assimilative models, such as the Assimilative Mapping of Ionospheric Electrodynamics, have the advantage that the ion convection and auroral particle precipitation patterns are mutually consistent and based on available observations. However, assimilating a large set of diverse data requires expert knowledge and is time consuming. Empirical models, on the other hand, are convenient to use, but do not capture all the observed spatial and temporal variations. With the availability of Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) data, there is an opportunity for employing field-aligned currents (FAC) in GCMs to represent the MI coupling. In this study, we will introduce a new method which enables us to use observed FAC in GCMs and solve for the interhemispherically asymmetric electric potential distribution. We compare Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) simulations of a geomagnetic storm period using the new approach and two other often-used methods for specifying MI coupling based on empirical and assimilative high latitude electric potentials. The comparison shows general similarities of the TI storm time response and improved temporal variability of the new method compared to using empirical models, but results also illustrate substantial differences due to our uncertain knowledge about the MI coupling process.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7pk0kjd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-01-11T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:14:36.508122

Metadata language

eng; USA