Impact of breaking wave form drag on near-surface turbulence and drag coefficient over young seas at high winds
The effects of breaking waves on near-surface wind turbulence and drag coefficient are investigated using large-eddy simulation. The impact of intermittent and transient wave breaking events (over a range of scales) is modeled as localized form drag, which generates airflow separation bubbles downstream. The simulations are performed for very young sea conditions under high winds, comparable to previous laboratory experiments in hurricane-strength winds. The results for the drag coefficient in high winds range between about 0.002 and 0.003. In such conditions more than 90% of the total air–sea momentum flux is due to the form drag of breakers; that is, the contributions of the nonbreaking wave form drag and the surface viscous stress are small. Detailed analysis shows that the breaker form drag impedes the shear production of the turbulent kinetic energy (TKE) near the surface and, instead, produces a large amount of small-scale wake turbulence by transferring energy from large-scale motions (such as mean wind and gusts). This process shortcuts the inertial energy cascade and results in large TKE dissipation (integrated over the surface layer) normalized by friction velocity cubed. Consequently, the large production of wake turbulence by breakers in high winds results in the small drag coefficient obtained in this study. The results also suggest that common parameterizations for the mean wind profile and the TKE dissipation inside the wave boundary layer, used in previous Reynolds-averaged Navier–Stokes models, may not be valid.
document
http://n2t.net/ark:/85065/d75h7h32
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2013-02-01T00:00:00Z
Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:49:42.033724