Identification

Title

Subseasonal-to-seasonal (S2S) prediction of atmospheric rivers in the Northern Winter

Abstract

<p><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(34, 34, 34);display:inline !important;float:none;font-family:-apple-system, &quot;system-ui&quot;, &quot;Segoe UI&quot;, Roboto, Oxygen-Sans, Ubuntu, Cantarell, &quot;Helvetica Neue&quot;, sans-serif;font-size:18px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">Atmospheric rivers (ARs) are characterized by intense lower tropospheric plumes of moisture transport that are frequently responsible for midlatitude wind and precipitation extremes. The prediction of ARs at subseasonal-to-seasonal (S2S) timescales is currently at a low level of skill, reflecting a need to improve our understanding of their underlying sources of predictability. Based on 20 year hindcast experiments from the Geophysical Fluid Dynamics Laboratory’s SPEAR S2S forecast system, we evaluate the S2S prediction skill of AR activities in the northern winter. Higher forecast skill is detected for high-frequency AR activities (3–7 days/week) compared to low-frequency AR activities (1–2 days/week), even though the occurrence rate of high-frequency ARs exceeds that of low-frequency ARs. For the first time, we have applied the Average Predictability Time technique to the SPEAR system to identify the three most predictable modes of AR in the North Pacific sector. These modes can be attributed to the influences of the El Niño–Southern Oscillation, the Pacific North American pattern, and the Arctic Oscillation. S2S AR forecast skill in western United States is modulated by various phases of large-scale variability. This study highlights potential windows of opportunity for operational S2S AR forecasting.</span></p>

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d73x8bz3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:56:01.485603

Metadata language

eng; USA