Identification

Title

Modelling a multi-spacecraft coronal mass ejection encounter with EUHFORIA

Abstract

Context. Coronal mass ejections (CMEs) are a manifestation of the Sun’s eruptive nature. They can have a great impact on Earth, but also on human activity in space and on the ground. Therefore, modelling their evolution as they propagate through interplanetary space is essential. Aims. EUropean Heliospheric FORecasting Information Asset (EUHFORIA) is a data-driven, physics-based model, tracing the evolution of CMEs through background solar wind conditions. It employs a spheromak flux rope, which provides it with the advantage of reconstructing the internal magnetic field configuration of CMEs. This is something that is not included in the simpler cone CME model used so far for space weather forecasting. This work aims at assessing the spheromak CME model included in EUHFORIA. Methods. We employed the spheromak CME model to reconstruct a well observed CME and compare model output to in situ observations. We focus on an eruption from 6 January 2013 that was encountered by two radially aligned spacecraft, Venus Express and STEREO-A. We first analysed the observed properties of the source of this CME eruption and we extracted the CME properties as it lifted off from the Sun. Using this information, we set up EUHFORIA runs to model the event. Results. The model predicts arrival times from half to a full day ahead of the in situ observed ones, but within errors established from similar studies. In the modelling domain, the CME appears to be propagating primarily southward, which is in accordance with white-light images of the CME eruption close to the Sun. Conclusions. In order to get the observed magnetic field topology, we aimed at selecting a spheromak rotation angle for which the axis of symmetry of the spheromak is perpendicular to the direction of the polarity inversion line (PIL). The modelled magnetic field profiles, their amplitude, arrival times, and sheath region length are all affected by the choice of radius of the modelled spheromak.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ws8xp9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-08-04T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:29:59.576723

Metadata language

eng; USA