Identification

Title

Variability of SST through Koopman modes

Abstract

The majority of dynamical systems arising from applications show a chaotic character. This is especially true for climate and weather applications. We present here an application of Koopman operator theory to tropical and global sea surface temperature (SST) that yields an approximation to the continuous spectrum typical of these situations. We also show that the Koopman modes yield a decomposition of the datasets that can be used to categorize the variability. Most relevant modes emerge naturally, and they can be identified easily. A difference with other analysis methods such as empirical orthogonal function (EOF) or Fourier expansion is that the Koopman modes have a dynamical interpretation, thanks to their connection to the Koopman operator, and they are not constrained in their shape by special requirements such as orthogonality (as it is the case for EOF) or pure periodicity (as in the case of Fourier expansions). The pure periodic modes emerge naturally, and they form a subspace that can be interpreted as the limiting subspace for the variability. The stationary states therefore are the scaffolding around which the dynamics takes place. The modes can also be traced to the Ni ntilde;o variability and in the case of the global SST to the Pacific decadal oscillation (PDO).

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72z19rc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-08-15T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2024 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:59:31.216872

Metadata language

eng; USA