Identification

Title

Explicitly simulated tropical convection over idealized warm pools

Abstract

Two-dimensional cloud-system-resolving simulations of convection over idealized warm pools are conducted to examine the relationship between the spatial patterns of tropical convection and the sea surface temperature (SST) distributions. Results show that the most active convection resides near the edge of warm pools, with a local minimum around the warmest center. This finding might provide an interpretation for the observations that peak convection is commonly located several degrees of latitude off the maximum SST over some tropical oceans. Factors potentially affecting the convective patterns are explored through sensitivity experiments. It is found that convection expands significantly and rainfall peaks are further displaced several hundred more kilometers away from the warmest water when the radiative cooling/heating is applied homogeneously across the domain. Conversely, when the wind-induced surface flux variability is excluded, convective activity is confined within a much narrower area of high SSTs, but the overall spatial pattern is largely retained. Moreover, the surface friction exerts profound effects on the simulated convection and attendant large-scale flow and is mostly responsible for the dual-maximum precipitation and two-cell circulation structure in the horizontal. These results suggest that as well as the temperature/pressure gradients resulting from the non-uniform SSTs, other processes must be taken into consideration in the interpretation of observed tropical convection and circulation.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7cj8fss

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-11-13T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:05:16.280279

Metadata language

eng; USA