Identification

Title

High-resolution global magnetohydrodynamic simulation of bursty bulk flows

Abstract

A high-resolution global magnetohydrodynamic simulation is conducted with the Lyon-Fedder-Mobarry (LFM) model for idealized solar wind conditions. Within the simulation results high-speed flows are seen throughout the magnetotail when the interplanetary magnetic field (IMF) is southward. Case study analysis of these flows shows that they have an enhancement in BZ and a decrease in density preceding a peak in the flow velocity. A careful examination of the structure within the magnetotail shows that these features are driven by bursts of magnetic reconnection. In addition to the case study, a superposed epoch analysis of flows occurring during a 90 min interval of southward IMF yields statistical properties that are in qualitative agreement with observational analysis of bursty bulk flows (BBFs). For the idealized simulation conditions, the most significant differences with the observational results are a broader velocity profile in time, which becomes narrower away from the center of the current sheet, and a larger density drop after flow passage. The peak BZ amplitude is larger than in observations and precedes the peak in the flow velocity. We conclude that the LFM simulations are reproducing the statistical features of BBFs and that they are driven by spatially and temporally localized reconnection events within the simulation domain.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7zs2xq3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2015 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T22:40:54.417279

Metadata language

eng; USA