Identification

Title

Impact of assimilation of New York State Mesonet doppler wind lidar on high impact weather predictions in New York State

Abstract

The New York State (NYS) Mesonet consists of 126 surface weather stations across the state with 17 of the sites also instrumented with active and passive profiler systems. The NYS Mesonet (NYSM) is the first and only state-run network in the USA, that includes a combination of surface stations, Doppler wind lidars (DWL) and thermodynamic profiles from Microwave Radiometers (MWR). NYSM's continuous and extensive observations from the surface to the lower atmosphere have a wide range of applications in air quality and human health, forecasting of severe storms, and predicting renewable energy production. This study provides results of assimilating the NYSM surface station data and the DWL wind profiles. The impact of NYSM observations on predictive skill is evaluated for one tornadic supercell case that has large uncertainties in analysis with respect to low-level temperature, moisture, and wind variability. Compared to forecasts assimilating solely conventional observations except NYSM, the additional assimilation of NYSM observations effectively corrects the cold and dry biases in central New York State, resulting in a more accurate representation of surface conditions. Notably, the assimilation of NYSM DWL wind profiles improves the prediction of the location and intensity of convective systems, thereby creating an environment that increases the likelihood of supercell and tornado formation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7f76hwq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2024 Korean Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:56:10.020500

Metadata language

eng; USA