Identification

Title

Toward a strongly coupled assimilation in the Earth System Prediction Capability system

Abstract

We assess a possibility to efficiently represent the strongly coupled increment in an ocean-atmosphere coupled data assimilation (DA) system by applying an iterative procedure involving uncoupled solvers and the weakly coupled analysis as a first guess approximation to the strongly coupled increment. Using the output of the ensemble-based weakly coupled DA system, we explore convergence of the approximations to the strongly coupled DA solution by applying the uncoupled solver to a sequence of innovation vectors at various spacetime locations over the global ocean grid. The results demonstrate that, in general, fewer than two iterations are required to approximate the coupled increment in the majority of the locations tested with sufficient (3%) accuracy given the uncertainty of the background error covariance estimated from the limited number of the ensemble members. We assess the impact of data thinning and hybridization of the background error covariance model on the convergence of the iterative approximations to the strongly coupled increment. An empirical relationship between the spectral radius of the expansion matrix and convergence rate is obtained.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7mp57f7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2024 Royal Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:05:26.425899

Metadata language

eng; USA